Lead Storage Batteries

Two or more wet or dry cells connected in series make a battery. A car battery is generally a lead storage battery containing lead and lead oxide plates in sulfuric acid solution. In this experiment, you will construct a lead storage cell and use a direct-current power supply to charge it as shown in Figure 1. You will use the computer and a Voltage Probe to measure the cell's voltage (see Figure 2), and then use the cell to power an electric motor.

OBJECTIVES

In this experiment, you will

- Construct a lead storage cell.
- Use a Voltage Probe to measure a cell's voltage.
- Use the cell to power an electric motor.

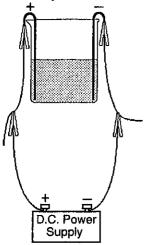


Figure 1

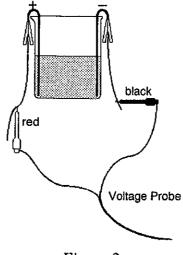


Figure 2

MATERIALS

computer
Vernier computer interface
Logger *Pro*Vernier Voltage Probe
direct-current power supply
2 lead strips (2 cm × 12 cm)
apron

250 mL beaker 2 alligator clips sulfuric acid, H₂SO₄ clock (with second hand) small electric motor 2 test leads

PROCEDURE

- 1. Obtain and wear goggles and an apron. CAUTION: The battery acid, H₂SO₄, used in this experiment can damage eyesight and make holes in clothing!
- 2. Obtain two lead strips. If the strips have been used before, get one labeled (+) and one labeled (-). If the strips are not marked, label one (+) and the other (-). Bend the strips and place them in a 250 mL beaker as shown in Figure 1. Attach an alligator clip to each lead strip.

- 3. Add 125 mL of sulfuric acid, H₂SO₄, to the beaker. Handle this strong acid with care!
- 4. Connect the probe to the computer interface. Prepare the computer for data collection by opening the file "29 Lead Batteries" from the *Chemistry with Computers* folder of Logger *Pro*.
- 5. Charge the cell using the direct-current power supply:
 - a. Attach the (-) lead from the power supply to the alligator clip on the (-) Pb electrode as shown in Figure 1.
 - b. Attach the (+) lead of the power supply to the alligator clip on the (+) Pb electrode to begin the charging process.
 - c. Time the charging process and disconnect the power supply leads after 4 minutes. Record observations during the charging process. CAUTION: Make sure the lead strips do not touch each other while connected to the power supply.
- 6. Attach the *red clip* of the Voltage Probe to the alligator clip on the (+) electrode (the black clip should still be attached to the (-) electrode via an alligator clip). Read the voltage value displayed in the meter. Record the reading after it stabilizes.
- 7. Disconnect the black and red voltage leads from the cell. Use two wire leads to connect the cell to a small electric motor. Use a clock to measure the number of seconds the charged cell runs the motor. Record the results. The cell is said to be discharging during this process.
- 8. Attach the red voltage lead to the alligator clip on the (+) electrode and its black clip to the alligator clip on the (-) electrode. Measure the voltage of the discharged cell. Record this value.
- 9. Repeat Steps 5-8 using a 2-minute charging time.
- 10. Observe the two lead electrodes and record your observations.
- 11. Return the H₂SO₄ solution to the "Used H₂SO₄" container supplied by your instructor. Wash and dry the beaker and the lead strips.

PROCESSING THE DATA

- 1. From the voltage values for the 1st and 2nd charging, calculate the average voltage of your cell when charged.
- 2. Cars generally have 12 volt batteries. How many lead storage cells, similar to the one you built, does a car battery contain? Explain.
- 3. Using a Table of Standard Reduction Potentials, write the equation occurring at the anode and cathode when the battery was discharging and behaving as a voltaic (electrochemical) cell. Write the standard potential value, E° , in the blank following the equation. In the third blank, write the net equation for the reaction by combining the two half-reactions. Find the E° total (or E° cell) by adding the E° values for the two half-reactions.
- 4. Find the percent error for the cell potential by comparing your experimental voltage value in Step 1 of Processing the Data with the accepted E°_{total} value in Step 3.

- 5. What was the gas you saw being produced at the (-) electrode, during charging? What was the gas being produced at the (+) electrode? Account for the danger of an explosion after car battery charging.
- 6. Explain why "run-down" car batteries sometimes freeze up and break open in extremely cold weather. Hint: Examine the equation for the net reaction in the Data and Calculations table below.
- 7. When you charged and discharged the battery in this experiment, which process was electrolytic? Which was electrochemical (voltaic)? Explain.

DATA AND CALCULATIONS

	1st Charging	2nd Charging
Voltage after charging	V	V
Time motor ran after charging	s	s
Voltage after discharge	V	V
Average potential of charged cell		
		V
	Equation	E°
Anode (–)		V
Cathode (+)		V
Net Reaction		V
Percent error		

OBSERVATIONS

%